Technische Bedingungen

Integrierte Kundenschaltkreise
bipolare KDA-Kundenschaltkreise KA 601 D und KA 602 D

Umfang 13 Seiten
Verantwortlich/bestätigt: PEB Halbleiterwerk Frankfurt (Oder)
Verbindlich ab

Vermerk
Die Schaltkreise KA 601 D (Analogteil) und KA 602 D (Digitalteil) sind als Kundenschaltkreis zum Aufbau von Zwischen generatoren für 32 Kanäle (2,048 Mbit/s) PCM-Übertragungseinrichtungen konstruiert.

1. **Allgemeines**
 nach HFO-S 754.151/01 mit folgender Präzisierung

 1.1. **Bezeichnung**
 Bezeichnung eines Schaltkreises vom Typ KA 601 D:

 SCHALTEREIS KA 601 D HFO-S 754.152

2. **Technische Festlegungen**
 nach HFO-S 754.151/01 mit folgenden Ergänzungen und Präzisierungen

2.1. **Konstruktion**
2.1.1. Abmessungen
Bauform 21.1.1.2.18 nach TGL 26 713 für KA 601 D
Bauform 21.1.1.2.15 nach TGL 26 713 für KA 602 D
Ausführung: Gehäuse aus Plast

2.1.2. **Masse**
$\leq 1,5$ g

2.2. **Funktionsbeschreibung, Anschlußableitung, Blockschaltbild**

Funktionsbeschreibung KA 601 D

An den Schaltkreis KA 601 D wird das verformte und gedämpfte PCM-Signal von Halle über einen Eingangsterminal an die Vorverstärker geführt und durch sie verstärkt und für eine günstige Erkennung entzerrt. In dem Datennetwerksystem der Peripherie des Schaltkreises ist die durch die automatische Regelung gespeiste und in Bauteilen enthaltene Taktquelle (gegenphasige Welligkeit) eingefügt, so daß Fehlerverstärkungen zwischen 0 bis 42 dB an zwei Bereichen ausgeglichen werden können.

Aus dem vorverstärkten Eingangssignal wird durch einen Zweifrequenzrichter die Steuerspannung für einen Schwingradkreis (Tankkreis), der auf die Hintergrundfrequenz von 2,048 MHz abgewichen ist, erzeugt. Aus dem Signal des Tankkreises, der so wenig bedämpft sein darf, das auf Signale mit einem "4"-Bit auf 7 Bits die Schwingung nicht absättigt, wird durch den Tankbegrenzer verstärker das in der Hintergrund enthaltene Taktsignal regeneriert.

Die Referenzenerzeugung stellt die entsprechenden Komparatorschwellen für den Regelteil, den Zweifrequenzrichter und die Datenkomparatoren des Digitalteiles bereit.
Der Schaltkreis KA 602 D erhält vom Analogteil das vorverstärkte und entzerrte Eingangssignal, die Referenzspannung zur Erkennung der "1"-Bits des quasiberührigen FDM-Signals und den Takt.

In den Komparatoren werden die positiven bzw. negativen "1"-Bits erkannt und an die Dateneingänge der Latch-Flip-Flops gegeben. Die Latches speichern zum Zeitpunkt der günstigsten Erkennbarkeit (Mittelwert des entzerrten Eingangssignals), d. h., es muß eine entsprechende Taktfolge durch den Analogteil gesichert sein, wobei gleichzeitig die Ausgangsschaltungen auf Senden veranlaßt werden.

Die Ausgangsstufen für den positiven bzw. negativen Datenkanal arbeiten auf einem gemeinsamen Gegentakt- Ausgangsverstärker, durch den das quasiberührte, gesicherte FDM-Signal auf die Leitung gekoppelt wird.

Die Taktverzögerung sorgt dafür, daß die Ausgangsstufen beim Austreten des Takt signals blockiert werden, so daß Streufrequenzen nicht als FDM-Signal übertragen werden.

Die digitalen Schaltungskomplexe sind als Mikroschaltungen ausgeführt, um die Datenhaltigkeit bei der Verwendung von Analog-Transistoren zu gewährleisten.

Anschlußbelegung

| Bild 1 |

Die Markierung als Profilierung im Gehäuse in geschützten Kaum kennzeichnet die Seite mit Anschluß 1.

Es bedeutet:

KA 601 D

1	Bankzeichen
2	Daten Plus
3	Taktsignal
4	Taktrelais
5	Takt
6	Eingang
7	Daten Minus
8	Endstufe
9	Betriebsspannung U 2
10	EY Minus
11	EY Plus
12	Taktrelais
13	Takt
14	EY Minus
15	EY Plus
16	Regel-Ausgang
17	Mit REF
18	Regelfilter

KA 602 D

1	Maske
2	Ausgang
3	Maske
4	Krei
5	Krei
6	Betriebsspannung U 2
10	Masken
11	Krei
12	Maske
13	Endstufe
14	Daten Plus
15	Maske
16	Plus Ausgang
Blockschaltung Ka 601 D

Bild 2
2.3. Elektrische Eigenschaften

2.3.4. Hauptkenngrößen

Die Hauptkenngrößen gelten bei folgenden Bedingungen:

\[
U_{00} = 6.4 \, V \pm 0.5 \% \quad J_a = 250 \, W \pm 5 \%
\]

Toleranzen für alle Spannungen: \(\pm 0.5 \% \)
Toleranzen für alle Ströme: \(\pm 1 \% \)

Betriebsbedingungen: a-Wert

<table>
<thead>
<tr>
<th>EA 601 B</th>
<th>Tabelle 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenngröße</td>
<td>Kurzzeichen</td>
</tr>
<tr>
<td>Stromaufnahme</td>
<td>(I_{00})</td>
</tr>
<tr>
<td>Teilspannungsausgang</td>
<td>(U_{TP})</td>
</tr>
<tr>
<td>Datensignalanlagen auf (U_{01})</td>
<td>(U_{TP} \cdot 0)</td>
</tr>
<tr>
<td>Abweichung der Beträge zwischen (u_{TP} / U_0)</td>
<td>(\Delta U)</td>
</tr>
<tr>
<td>Gleichspannungsvorstärkung des Verstärkers</td>
<td>(U_{012})</td>
</tr>
<tr>
<td>Eingangsoffsetspannung des Verstärkers</td>
<td>(U_{0014} \cdot 15)</td>
</tr>
<tr>
<td>H-Ausgangsspannung des Verstärkers</td>
<td>(U_{0012})</td>
</tr>
<tr>
<td>L-Ausgangsspannung des Verstärkers</td>
<td>(U_{0112})</td>
</tr>
<tr>
<td>Verstärkung</td>
<td>Gleichspannungsvorstärkung des Endverstärkers</td>
</tr>
<tr>
<td>Eingangsoffsetspannung des Endverstärkers</td>
<td>(U_{010} \cdot 13)</td>
</tr>
<tr>
<td>H-Ausgangsspannung des Endverstärkers</td>
<td>(U_{016})</td>
</tr>
<tr>
<td>L-Ausgangsspannung des Endverstärkers</td>
<td>(U_{018})</td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 1

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Einzelwerte</th>
<th>Einheit</th>
<th>Kleinstwert</th>
<th>Größtwert</th>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Tankkreisspannung (U_{\text{GK}})</td>
<td>V</td>
<td>5,4</td>
<td>-</td>
<td>-</td>
<td>(U_{\text{GK}} = U_{\text{GK}})</td>
</tr>
<tr>
<td>L-Tankkreisspannung (U_{\text{FK}})</td>
<td>V</td>
<td>-</td>
<td>3,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tankkreisquers. (I_2)</td>
<td>mA</td>
<td>2,43</td>
<td>4,03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tankkreisanpassung (U_{\text{GK}})</td>
<td>V</td>
<td>3,9</td>
<td>4,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stellglied Ausspannung (U_{\text{GK}})</td>
<td>mV</td>
<td>=</td>
<td>75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stellglied Hinspannung (U_{\text{GK}})</td>
<td>V</td>
<td>1,2</td>
<td>2,05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Filterkreisstrom (I_{\text{FK}})</td>
<td>mA</td>
<td>2,2</td>
<td>2,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eigenfilterkreisstrom (I_{\text{FK}})</td>
<td>mA</td>
<td>=</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eingangsspannung der Taktbegränzervorsteuerung (U_{\text{GK}})</td>
<td>V</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eingangsspannung des Taktbegränzervorstärkens (U_{\text{GK}})</td>
<td>V</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Taktspannung (U_{\text{GK}})</td>
<td>V</td>
<td>5,7</td>
<td>6,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-Heizspannung (U_{\text{GK}})</td>
<td>V</td>
<td>-</td>
<td>4,4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

EA 602 D

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Einzelwerte</th>
<th>Einheit</th>
<th>Kleinstwert</th>
<th>Größtwert</th>
<th>Einstellwerte</th>
</tr>
</thead>
</table>

2.3.2. Nebenkenngrößen
Die Nebenkenngrößen gelten bei folgenden Bedingungen:
- \(U_{\text{GK}} = 5,0 \text{ bis } 7,0 \text{ V} \)
- \(T_{\text{a}} = -40 \text{ bis } 65 \text{ °C} \)
- Toleranzen für alle Spannungen \(\pm 0,3 \% \)
- Toleranzen für alle Ströme \(\pm 1 \% \)
- Bewertungskriterium: \(z \)-Wert
<table>
<thead>
<tr>
<th>Leistungsglied</th>
<th>Kurzzeichen</th>
<th>Einheiten</th>
<th>Klemmenspannung</th>
<th>Größtwert</th>
<th>Einstellungwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromaufnahme</td>
<td>I_{in}</td>
<td>mA</td>
<td>2,51</td>
<td>2,89</td>
<td>12,6</td>
</tr>
<tr>
<td>Teilspannung</td>
<td>U_{p}</td>
<td>V</td>
<td>0,320</td>
<td>0,400</td>
<td>0,06</td>
</tr>
<tr>
<td>I/F-Schwellen bezogen auf U_{012}</td>
<td>G_{012}</td>
<td>mA</td>
<td>4</td>
<td>54</td>
<td>2,5 mA</td>
</tr>
<tr>
<td>Abweichung des Betriebs zwischen U_{y} und U_{y}</td>
<td>E_{y}</td>
<td>V</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingangsspannung des Vervielfachers</td>
<td>E_{014,15}</td>
<td>V</td>
<td>2,5</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>Eingangsspannung des Vorverstärkers</td>
<td>E_{014,15}</td>
<td>V</td>
<td>2,5</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>Eingangsstrom des Vervielfachers</td>
<td>I_{012}</td>
<td>mA</td>
<td>4,5</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>Eingangsstrom des Vorverstärkers</td>
<td>I_{010,11}</td>
<td>mA</td>
<td>2,5</td>
<td>10 mA</td>
<td></td>
</tr>
<tr>
<td>Eingangsstrom des Nachverstärkers</td>
<td>I_{034,4}</td>
<td>mA</td>
<td>1,0</td>
<td>10 mA</td>
<td></td>
</tr>
<tr>
<td>Verstärkung des Vervielfachers</td>
<td>E_{012}</td>
<td>V</td>
<td>2,5</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>Ausgangswiderstand des Vervielfachers</td>
<td>R_{072}</td>
<td>Ω</td>
<td>120</td>
<td>1 MΩ</td>
<td></td>
</tr>
<tr>
<td>Ausgangswiderstand des Vorverstärkers</td>
<td>R_{y}</td>
<td>Ω</td>
<td>56</td>
<td>5 kΩ</td>
<td></td>
</tr>
<tr>
<td>Eingangswiderstand des Vervielfachers bezogen auf den Eingang</td>
<td>E_{y}</td>
<td>V</td>
<td>2,5</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>Eingangswiderstand des Vorverstärkers</td>
<td>R_{y}</td>
<td>Ω</td>
<td>2,5</td>
<td>5 kΩ</td>
<td></td>
</tr>
<tr>
<td>Kolom 1</td>
<td>Kolom 2</td>
<td>Kolom 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bemerkung: Tabelle 2

Folgende Annahmen wurden...
<table>
<thead>
<tr>
<th>Konstanzgröße</th>
<th>Beobacht.</th>
<th>Kleinster Wert</th>
<th>Großer Wert</th>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obere Schmelzpunkt</td>
<td>mA</td>
<td>40</td>
<td>40</td>
<td>ohne Einstellung</td>
</tr>
<tr>
<td>Gegenstrom der Endstufen</td>
<td>mA</td>
<td>50</td>
<td>50</td>
<td>$U_{20} = 20V \pm 0.4 V; R_{12} = 7.4\Omega$</td>
</tr>
<tr>
<td>Gegenstrom der Endstufen (der Kathoden)</td>
<td>mA</td>
<td>5.5</td>
<td>5.5</td>
<td>$R_{38},R_{13},R_{14} = 10\Omega \pm 1%; U_{88,13} = 7.4V$</td>
</tr>
<tr>
<td>Stoßverzögerung der Endstufen Komponenten</td>
<td>ns</td>
<td>40</td>
<td>40</td>
<td>$t_{22,16} = 390\mu s \pm 1%$</td>
</tr>
<tr>
<td>Minimal eingesetzte Anzahl Potentiometerstufen</td>
<td>V</td>
<td>900</td>
<td>900</td>
<td>$U_{P} = 990V \pm 1%; I_{P} = 900mA$</td>
</tr>
<tr>
<td>Mindestverstellbarkeit der Potentiometerstufen</td>
<td>V</td>
<td>40</td>
<td>40</td>
<td>$t_{22,16} = 390\mu s \pm 1%$</td>
</tr>
<tr>
<td>Gegenstand der Ausgangsspannung der Endstufe</td>
<td>ms</td>
<td>224</td>
<td>224</td>
<td>$R_{22,16} = 390\Omega \pm 1%; T_{MAX} = 2.048\mu s$</td>
</tr>
<tr>
<td>Ausgleichsgliederung positive und negative Ausgangsspannungen</td>
<td>ns</td>
<td>10</td>
<td>10</td>
<td>$R_{22,16} = 190.2V \pm 1%$</td>
</tr>
<tr>
<td>Schaltzeiten der H-Z-Flanken</td>
<td>ns</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Schaltzeit der Ausgangsspannung (A)</td>
<td>ns</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Schaltzeit der H-Z-Flanken (A)</td>
<td>ns</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Relativspannung der Endstufe</td>
<td>V</td>
<td>0.65</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Relativspannungsdiagonale</td>
<td>V</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
2.1. Grenzwerte

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Kurzzeichen</th>
<th>Einheitenzeichen</th>
<th>Kleinstwert</th>
<th>Größtwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsspannung</td>
<td>U_{CC}</td>
<td>V</td>
<td>5,4</td>
<td>12,0</td>
</tr>
<tr>
<td>Kollektor-Emitterspannung</td>
<td>U_{CE}</td>
<td>V</td>
<td>—</td>
<td>20,0</td>
</tr>
<tr>
<td>Periodischer Spitzstrom der Emitter für $U_{CE} = 1,5$ V; $I_{CE}/I_E = 0,9$</td>
<td>I_{CE}, 16</td>
<td>mA</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Wärmeleitwiderstand</td>
<td>$r_{th,j}$</td>
<td>K/W</td>
<td>—</td>
<td>130</td>
</tr>
<tr>
<td>Sperrschichtstemperatur</td>
<td>$T_{th, max}$</td>
<td>°C</td>
<td>—</td>
<td>125</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>T_{a}</td>
<td>°C</td>
<td>—</td>
<td>85</td>
</tr>
</tbody>
</table>

2.4. Klimatische Beständigkeit

Betriebstemperaturbereich unterer Grenzwert der Umgebungstemperatur: −40 °C
oberer Grenzwert der Umgebungstemperatur: 25 °C

2.5. Zuverlässigkeit

Betriebserlaubnis

die Lebenszeit für die D_{30}-Berechnung ist die Kalenderzeit. Sie muss mindestens 12 Monate (3750 h) betragen und eine Betriebszeit von mindestens 1000 h enthalten.

Die Betriebsausfallrate besteht sich auf Funktionsausfälle, die durch die J3 verursacht wurden.

Als typische Beanspruchung gilt:

elektrisch: $U_{CE} = 3,7$ V; I_{CE} < 12 mA; $I_{IE} < 0,39$ mA (für 500 W)

klimatisch: Umgebungstemperatur $T_{a} = 3$ bis 55 °C
maximale relative Feuchtigkeit: 80 % höchstens damit koppelbare Umgebungstemperatur: 25 °C
mechanisch: Einsatzgruppe B IX nach IEC 200-0957/04
3. Abnahmeverfahren
nach HPO-S 754.151/01 mit folgenden Ergänzungen und Präzisierungen:
Erprüfungen B1 bis B5 nach HPO-S 754.151/01 mit folgenden Ergänzungen und Präzisierungen:
Die Prüfergebnisse B1 bis B5 werden von 16poligen bzw. 16poligen
18 mit der Trägerstromvariante 18 339 gewertet.
Erprüfungen B5 nach HPO-S 754.151/02

4. Prüfverfahren
nach HPO-S 754.151/01 mit folgenden Ergänzungen und Präzisierungen

4.1. Meßverfahren
Der Hersteller hat durch seine Messungen die Großen- und/oder Kleinstellenabwägung abzuschließen.
Der Anwender darf einen Schaltpunkt als fehlerhaft bezeichnen, wenn der Kleinstwert und/oder der Größtwert unter Einbeziehung der zur Prüfung verwendeten Meßaufnahme nur und/oder überschritten wird.
Der maximale Fehler gilt für den stationären Zustand.

4.1.1. Messung der Hauptkoordinaten
Es gelten die unter Abschnitt 2.3.4. genannten Einstellbedingungen
EA 601 D

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Wert</th>
<th>maximaler zufälliger Fehler in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromaufnahme</td>
<td>0,9</td>
<td>1</td>
</tr>
<tr>
<td>Teilerrauschspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Betriebsspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Gleichspannungseinstellung des Verstärkers, Endverstärker und Ektverstärker</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Einstellung der Ektverstärker, stärkere, Endverstärker und Ektbegrenzerstärker</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>E-Ausgangsspannung, stärkere und Endverstärker</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>L-Ausgangsspannung, komische und Endverstärker</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Abweichungen zwischen U, U, U</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>H-Widerstandspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>E-Widerstandspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Ekt-Widerstandspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Tankreferenzspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Stelllichtspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Stelllichtspannung</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Filtrierung</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Steuerungseinstellung</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tankausgangsspannung</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>L-Tankausgangsspannung</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabelle 7

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Kurz-</th>
<th>maximaler auflösender Fehler in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromaufnahme</td>
<td>I<sub>DC</sub></td>
<td>1</td>
</tr>
<tr>
<td>Reststrom der Endstufen</td>
<td>I<sub>DC</sub></td>
<td>1</td>
</tr>
</tbody>
</table>

4.1.2. Messung der Nebenkenngrößen

Die Messung der Nebenkenngrößen erfolgt nach der Maßvorschrift Nr. des Hauptverordnung.

Tabelle 8

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Kurz-</th>
<th>maximaler auflösender Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromaufnahme</td>
<td>I<sub>DC</sub></td>
<td>1 %</td>
</tr>
<tr>
<td>Teilerbezugsspannung</td>
<td>U<sub>217</sub></td>
<td>0,5 %</td>
</tr>
<tr>
<td>Datenskalieren bezogen auf U<sub>517</sub></td>
<td>U<sub>T</sub>/U<sub>0</sub></td>
<td>1 %</td>
</tr>
<tr>
<td>Abweichung der Netto, zwischen U<sub>T</sub>/U<sub>0</sub></td>
<td>U<sub>T</sub></td>
<td>1 %</td>
</tr>
<tr>
<td>Eingangsspannungspegel des Vor-- und Endverstärkers U<sub>n</sub></td>
<td>104,15,3</td>
<td>2 %</td>
</tr>
<tr>
<td>Tankstromquerschnitt</td>
<td>I<sub>n</sub></td>
<td>1 %</td>
</tr>
<tr>
<td>Eingangsquerschnitt des Vor-- und Endverstärkers</td>
<td>I<sub>n</sub></td>
<td>104,15</td>
</tr>
<tr>
<td>Verstärkung des Vor- und Endverstärkers bei 1 MHz</td>
<td>A<sub>n</sub></td>
<td>0,5 dB</td>
</tr>
<tr>
<td>Phasenerstet des Vor- und Endverstärkers im Bereich</td>
<td>5 gsd</td>
<td></td>
</tr>
<tr>
<td>3,5 bis 9 MHz</td>
<td>A<sub>n</sub></td>
<td>0,5 dB</td>
</tr>
<tr>
<td>Ausgangswiderstand des Vor- und Endverstärkers</td>
<td>A<sub>n</sub></td>
<td>5 %</td>
</tr>
<tr>
<td>Gerätespannung des Vor- und Endverstärkers</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Endverstärker bezogen auf</td>
<td>F<sub>n</sub></td>
<td>5 %</td>
</tr>
<tr>
<td>den Hörer</td>
<td>F<sub>n</sub></td>
<td>5 %</td>
</tr>
<tr>
<td>Ausgangsberechnung der</td>
<td>D<sub>SS</sub></td>
<td>10 %</td>
</tr>
<tr>
<td>Tankkreises</td>
<td>D<sub>SS</sub></td>
<td>10 %</td>
</tr>
<tr>
<td>Überspannung der Endverstärker</td>
<td>D<sub>SS</sub></td>
<td>10 %</td>
</tr>
<tr>
<td>Taktstellung der Taktwelle</td>
<td>D<sub>SS</sub></td>
<td>0,2 %</td>
</tr>
<tr>
<td>Signalversorgung des Haupteingangsverstärker</td>
<td>D<sub>DC</sub></td>
<td>2 %</td>
</tr>
<tr>
<td>Anstieg- und Abfallzeit</td>
<td>D<sub>n</sub></td>
<td>2 %</td>
</tr>
<tr>
<td>Taktwelle maximaler und minimaler Leitwert des Steigleides Anstieg</td>
<td>D<sub>n</sub></td>
<td>16 %</td>
</tr>
<tr>
<td>mittlerer Leitwert des Steilkomini</td>
<td>D<sub>n</sub></td>
<td>16 %</td>
</tr>
<tr>
<td>Steilkomini</td>
<td>D<sub>n</sub></td>
<td>10 %</td>
</tr>
</tbody>
</table>
Tabelle 9:

<table>
<thead>
<tr>
<th>Kenngröße</th>
<th>Minimale</th>
<th>Maximaler zulässi-</th>
<th>licher Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromaufnahme</td>
<td>I_{CC}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destrom der Endstufe</td>
<td>I_{DD}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingangswiderstand der Datenkomparatoren</td>
<td>R_{G}, $9,13$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signalverzögerung der Datenkomparatoren</td>
<td>v_{D}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximaler Eingangswiderstand des Datenimpulshöhe</td>
<td>R_{IN}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mindestsignalwiderstand der Datenimpulse</td>
<td>v_{MIN}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Länge der Ausgangsimpulse der Endstufe</td>
<td>t_{i}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulslängendifferenz zwischen positiven und negativen Ausgangsimpulsen</td>
<td>t_{i}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstiegzeit der 1/2-Flanke und Abfallzeit der 1/2-Flanke der Ausgangsimpulse</td>
<td>t_{1}, t_{2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restspannung der Endstufen</td>
<td>$U_{22,16}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restspannungsdifferenz</td>
<td>$U_{22,16}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Transport und Lagerung

Nach 350-C 757.157/01

6. Anwendungsangaben

der Hersteller

Hinweise

Im vorliegenden Standard ist auf folgende Standards Bezug genommen: