Integrierte Halbleiterschaltkreise

Testschaltkreis B 385 D

Technische Bedingungen

TGL

43789

Gruppe 13787

Микросхемы интегральные полупроводниковые; Схема испытательная В 385 D; Технические условия

Integrated Semiconductor Circuits; Test Circuit B 385 D; Detail Specification

Deskriptoren: Integrierter Halbleiterschaltkreis

Umfang 6 Seiten

Verantwortlich/bestätigt: 30. 9. 1987, VEB Kombinat Mikroelektronik, Erfurt

Verbindlich ab 1. 8. 1988

Eigentum des ITM

Vorbemerkung

Der Schaltkreis B 385 D bildet zusammen mit den IS B 384 D, B 386 D und B 387 D einen Komplex für die Teilnehmeranschlußschaltung.

1. ALLGEMEINES

1.1. Allgemeine Technische Bedingungen

nach TGL 24951

1.2. Integrationsgrad

IG3

Standard versand,

1.3. Bezeichnung

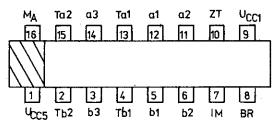
SCHALTKREIS B 385 D TGL 43789

2. TECHNISCHE FORDERUNGEN

2.1. Konstruktion

2.1.1. Bauform, Ausführung

Bauform 21.2.1.2.16 nach TGL 26713 Ausführung: Gehäuse aus Plast


💆 2.1.2. Masse

≦ 1,5 g

2.1.3. Fluß- und Waschmittelbeständigkeit

nach TGL 32377/02

2.2. Anschlußbelegung, Blockschaltbild, Funktionsbeschreibung

Markierung als Profilierung im Gehäuse im schraffierten Raum kennzeichnet Seite mit Anschluß 1

Bild 1

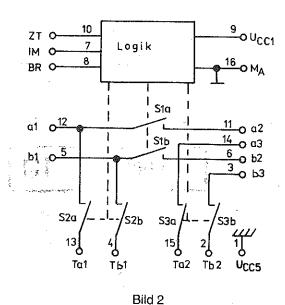
negative Betriebsspannung

Es bedeuten:

1 U_{CC5}

	- 003	(O-1-4-1-1-0)
		(Substratanschluß)
2	Tb2	Testbus b-Ader
3	b3	b-Ader
4	Tb1	Testbus b-Ader
5	b1	b-Ader
6	b2	b-Ader
7	IM	Logikeingang Inneneingang
8	BR	Logikeingang Bereitschaft
9	U_{CC1}	positive Betriebsspannung
0	ZT	Logikeingang Testbus
1	a2	a-Ader
2	a1	a-Ader
3	Ta1	Testbus a-Ader
4	a3	a-Ader
5	Ta2	Testbus a-Ader
6	M۸	Masse

Anmerkung:


Die Schaltkreise B 384 D bis B 387 D bilden einen Komplex, der die Durchnumerierung der Betriebsspannungen erfordert.

	1
107	ĺ,
٥	C
۲	•
All more	_
7	7
٠	ï
7	١,
ł	•
	ľ
1	١
•••	
-	-
	_
-	r
•	۰
101 - 111/	,
т	•
	1
j	,
-	•
-	•

ST

316/88

Blockschaltbild

Der Testschalter-Schaltkreis für Teilnehmeranschlußschaltungen B 385 D enthält drei bidirektional zu betreibende Schalterpaare mit der dazugehörigen TTL-kompatiblen Ansteuerlogik.

Die Schalter sind als Thyristorschalter mit niedrigem Durchlaßwiderstand für Ströme bis zu 70 mA und Sperrspannungen bis zu 91 V konzipiert.

Um Meßfehler, die durch interne Steuerströme beim Leitungstest hervorgerufen werden, zu minimieren, ist für die Schalter S2 eine spezielle Kompensationsschaltung vorgesehen.

Folgende Betriebsarten sind möglich:

- A Durchschalten der a- bzw. b-Ader (S1 geschlossen, ZT = L)
- B Anschalten der a- bzw. b-Ader an Testbus 1 (S2 geschlossen) (Leitungstest)

- C Anschalten der a- bzw. b-Ader an Testbus 2 (S3 geschlossen) (Innenmessung)
- D Freischalten (Auftrennen der Schalter)
- E Aufschalten (S1 und S3 geschlossen)

Tabelle 1

Stellung	ZT	IM	BR	S1	S2	S3
Α		Н	Х	l	0	0
AL			L			
В	Н	Н	L	0	Ι.	0
С	Н	L	Х	0	_	I
CL			L			
·D	Τ	Η	Н	0	0	0
E		L	Х	İ	0	#
EL	_		L			

Betriebsartenbezeichnung A bis E entspricht Schalterstellung nach Tabelle 1

- O offen
- I geschlossen
- X beliebig (H oder L)

2.3. Elektrische Eigenschaften

2.3.1. Haupt- und Nebenkenngrößen

Für die Kenngrößen nach Tabelle 2 gilt:

Umgebungstemperatur

 $\vartheta_a = 25^{\circ}\text{C} - 5\,\text{K}$

Betriebsspannung

 $U_{CC1} = 5 V \pm 50 \,\text{mV}$

 $-U_{CC5} = 93 \text{ V} \pm 0.5 \text{ V}$

Toleranz der übrigen Einstellwerte: ± 1 %

	Kleinstwert	Größtwert
H-Pegel	2,0 V	U _{CC1}
L-Pegel	0 V	0,8 V

Tabelle 2

Kenngröße			Größtwert			Schalter	
			a- Wert	K- Wert	Einstellwerte	in Stellung nach Tabelle 1	Prüf- kategorie
Stromaufnahme	I _{ÇC1}	mΑ	2,04	5		EL	-
	-I _{CC5}	mA	2,65	5	$\begin{aligned} -U_{a1} &= -U_{b1} = 3 \text{ V} \\ -I_{a2} &= -I_{b2} = 25 \text{ mA} \end{aligned}$	AL	A, B, Q
			2,65		$\begin{aligned} -U_{a3} &= -U_{b3} = 3 \text{ V} \\ -I_{la2} &= -I_{Tb2} = 25 \text{ mA} \end{aligned}$	CL	
			0,515	<u> </u>		EL	B, Q
			2,65		$\begin{aligned} -U_{a1} &= -U_{b1} = 3 \text{ V} \\ -I_{Ta1} &= -I_{Tb1} = 25 \text{ mA} \end{aligned}$	В	

Fortsetzung der Tabelle 2

	Gröf	3twert		Schalter in Stellung	Prüf-
Kenngröße	a- Wert	K- Wert	Einstellwerte	nach Tabelle 1	kategorie
Durchlaßspannung U _{a1/a2}	V		$-U_{a1} = 3 V$ $-I_{a2} = 25 \text{ mA}$	-	A, B, Q
de d'	V	2,5	$-U_{a2} = 3 V$ $-I_{a1} = 25 \text{ mA}$	AL	
U _{b1/b2}	V		$-U_{b1} = 3 V$ $-I_{b2} = 25 \text{ mA}$		
U _{b2/b1}	V .		$-U_{b2} = 3 V$ $-I_{b1} = 25 \text{ mA}$		
mit den Paarungen (X, Y): (a1, Ta1), (b1, Tb1)	V	_	$-U_X = 3 V$ $-I_Y = 25 \text{ mA}$ $bzwU_Y = 3 V$ $-I_X = 25 \text{ mA}$	В	B, Q
(a3, Ta2), (b3, Tb2) Durchlaßwiderstand				CL	·····
	17	20	$ \begin{aligned} -U_X &= 3 V; -I_Y = 25 \text{mA} \\ \text{und} &-I_Y = 26 \text{mA bzw}. \\ -U_Y &= 3 V; -I_X = 25 \text{mA} \\ \text{und} &-I_X = 26 \text{mA} \end{aligned} $	AL.	A, B, Q
(a1, Ta1), (b1, Tb1) (a3, Ta2), (b3, Tb2)				B CL	B, Q
Schaltersperrstrom I _{X/Y} , I _{Y/X} mit den Paarungen (X, Y): (a1, a2), (b1, b2)	10,3	100	$-U_Y = 91 \text{ V}, -U_X = 3 \text{ V}$ bzw. $-U_Y = 3 \text{ V},$ $-U_X = 91 \text{ V}$	D	A, B, Q
(a1, Ta1), (b1, Tb1) (a3, Ta2), (b3, Tb2)					B, Q
Fehlstrom $\frac{ I_{a1} , I_{b1} }{ I_{Ta1} , I_{Tb1} } \mu$	5,4	10	$-U_{a1} = -U_{b1} = 40 \text{ V}$ $-U_{Ta1} = -U_{Tb1} = 40 \text{ V}$	В	A, B, Q
$-I_{a1}, -I_{b1}$ μ		·	$-U_{a1} = -U_{b1} = 40 \text{ V}$		
$-I_{a2}, -I_{b2}$ μ	<u> </u>		$-U_{a2} = -U_{b2} = 40 \text{ V}$	AL	
$- _{a3}$, $- _{b3}$ μ	31		$-U_{a3} = -U_{b3} = 40 \text{ V}$		
$-I_{Ta2}$, $-I_{Tb2}$ μ	\		$-U_{Ta2} = -U_{Tb2} = 40 \text{ V}$	- CL	
Durchlaßwiderstands- differenz ΔR _{S1} Ω	2		$-I_{a2} = 25 \text{ und } 26 \text{ mA}$ $-U_{b2} = 3 \text{ V}; R_{a1/b1} = 0 \Omega$	A 1 P-	
ΔR' _{S1}	2		$-I_{b2} = 25 \text{ und } 26 \text{ mA}$ $-U_{a2} = 3 \text{ V}; R_{a1/b1} = 0 \Omega$	— A oder E	
ΔR _{S2}	2	_		- Boder C	B, Q
ΔR' ₈₂ Ω	2,4		$-I_{Tb1} = 25 \text{ und } 26 \text{ mA} -U_{Ta1} = 3 \text{ V} R_{a1/b1} = 0 \Omega$	D Odel C	
ΔR _{S3} S	2		$-I_{Ta2} = 25 \text{ und } 26 \text{ mA} -U_{Tb2} = 3 \text{ V} R_{a3/b3} = 0 \Omega$		
<u>ΔR'_{s3} Ω</u>	2		$-I_{Tb2} = 25 \text{ und } 26 \text{ mA}$ $-U_{Ta2} = 3 \text{ V}$ $R_{a3/b3} = 0 \Omega$	C oder E	

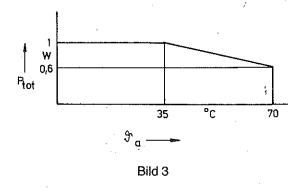

2.3.2. Grenzwerte

Tabelle 3

Kenngröße		Kleinst- wert	Größt- wert
Betriebsspannung U _{CC1}	٧	0	6,0
$\overline{U_{CC1} - U_{CC5}}$	V	– .	100,25
Substratspannung - U _{CC5}	٧	0	95
Schalterspannungs- bereich U _{a1,2,3} ; U _{b1,2,3} ; U _{Ta1,2} ; U _{Tb1,2}	V	U _{CC5}	O_
Schalterstrom je Schalter bzw. Schleife I _{S1,S2,S3}	mA	·	70
Umgebungstemperatur ϑ_a	°C	0	70
Sperrschichttemperatur ϑ_{j}	°C		125

Das Ein- und Ausschalten ist nur im Schalterspannungsbereich von -U=3 bis 30 V zulässig. Im Schalterspannungsbereich -U=30 bis 60 V ist das Ein- und Ausschalten im stromlosen Betrieb zulässig. Für den Testbusschalter S3 ist das Schalten im stromlosen Zustand im gesamten Schalterspannungsbereich zulässig.

Verlustleistungsreduktionskurve

2.3.3. Betriebsbedingungen

Tabelle 4

Kenngröße		Kleinst- wert	Größtwert
Betriebsspannung U _{CC1}	٧	4,75	5,25
Substratspannung -U _{CC5}	٧	91	95
L-Eingangsspannung U _{IL}	٧	0	0,8
H-Eingangsspannung U _{IH}	٧	2,0	U _{CC1}
Schalterspannungs- bereich —U _{a1,a2,a3} ; —U _{b1,b2,b3} —U _{Ta1,Ta2} ; —U _{Tb1,Tb2}	٧	3,0	-U _{CC5} -2V

2.4. Klimatische Beständigkeit

Betriebstemperaturbereich

unterer Grenzwert der Umgebungstemperatur: 0°C oberer Grenzwert der Umgebungstemperatur: 70°C

2.5. Zuverlässigkeit

2.5.1. Prüfzuverlässigkeit

Prüfausfallrate $\lambda_{PO,6}$ nach Angaben der Herstellers

2.5.2. Betriebszuverlässigkeit

Für den Einsatz in vollelektronischen digitalen Vermittlungsanlagen gilt eine Betriebsausfallrate $\lambda_{BO,6}$ bei mittlerer Beanspruchung nach Angaben der Herstellers. Die Bezugszeit für die $\lambda_{BO,6}$ -Berechnung ist die Kalenderzeit. Sie muß mindestens 12 Monate (8760 h) betragen. Die Betriebsausfallrate bezieht sich auf Funktionsausfälle der Vermittlungsanlagen, die durch die IS verursacht werden.

Als mittlere Beanspruchung gilt:

elektrisch:

Betriebsbedingungen nach Tabelle 4

klimatisch:

 $\vartheta_a=5$ bis 40°C; maximale relative Luftfeuchte: 80 %; höchste damit koppelbare Umgebungstemperatur: 20°C mechanisch:

Beanspruchungsgruppe G2 nach TGL 200-0057/04 Sonstige Beanspruchungen der IS müssen vernachlässigbar sein.

3. ABNAHMEREGELN

nach TGL 24951

4. PRÜFUNGEN

4.1. Nachweis der Schwallötbarkeit der Anschlüsse

Prüfverfahren mit unkaschierter Lochplatte nach TGL 200-0053/04

Probenahme: 32 IS (512 Anschlüsse)

Zulässige Anzahl der Ausfälle: 15 Anschlüsse

4.2. Nachweis der mechanischen Festigkeit

Stoßfolgeprüfung nach TGL 24951

4.3. Nachweis der klimatischen Beständigkeit – Feuchte Wärme

Lagerungsprüfung nach TGL 9206/01, Methode 2031.1 (Prüfung Ca)

Prüfdauer: 10 d

Nach der Beanspruchung müssen die IS die a-Werte der Hauptkenngrößen bei $\vartheta_a = 25^{\circ}\text{C} - 5\text{ K}$ einhalten.

4.4. Nachweis der Prüfausfallrate

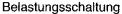
Der Nachweis hat durch eine elektrische Dauerbelastung zu erfolgen.

Belastungsbedingungen

minimale Beanspruchungsdauer: 1000 h

Belastungsschaltung nach Bild 4

Umgebungstemperatur: 25°C -5 K


Sollspannung an KP: $-U_{KP} = 6 \text{ V} \pm 2 \text{ V}$

Nach der Beanspruchung müssen die IS die a-Werte der Hauptkenngrößen einhalten.

Belastungsschaltung

Toleranzen, falls nicht anders angegeben:

R: \pm 2%; C: $^{+80}_{-20}$ %

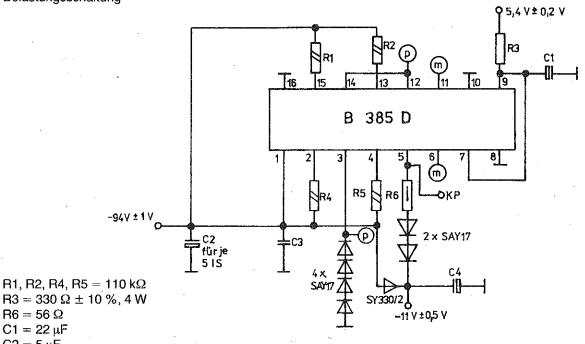


Bild 4

4.5. Meßverfahren

 $C3 = 47 \text{ nF} \pm 20 \%$

 $R6 = 56 \Omega$

 $C1 = 22 \mu F$ $C2 = 5 \mu F$

 $C4 = 10 \mu F$

4.5.1. Allgemeines

Der Hersteller hat durch seine Messungen die Größt- und/ oder Kleinstwerte abzusichern. Der Anwender darf einen Schaltkreis als fehlerhaft bezeichnen, wenn der Kleinstoder Größtwert unter Einbeziehung des Fehlers des zur Überprüfung verwendeten Meßaufbaues unter- bzw. überschritten wird.

Die Kennwerte sind mit den in Tabelle 2 angegebenen Einstellwerten zu messen.

Stützkondensator $U_{9/16} \ge 100 \text{ nF}$ ist vorzusehen.

Unter Berücksichtigung aller Einstell- und Gerätefehler ergeben sich im ungünstigsten Fall folgende maximale zufällige Fehler:

Tabelle 5

Kenngröße	Geräte- fehler %	maximal zufälliger Fehler %
I _{CC1}	± 1,0	± 2,0
I _{CC5} , mit Schalterstrom	± 4,3	± 5,0
I _{CC5} , ohne Schalterstrom	± 2,3	± 3,0
I _{XY}	± 1,5	± 2,7
I _{S2}		± 6,5
I _{S1,S3}	± 1,9	± 3,1
U _{XY}	± 0,5	± 2,0
R _{XY}	± 11,2	± 13,3
ΔR_{s}	± 16	± 20

4.5.2. Stromaufnahme

nach TGL 31 487/07

4.5.3. Durchlaßspannung, Schaltersperrstrom und Fehlstrom

Die Kennwerte sind als unmittelbar anzeigbare Werte zu ermitteln.

4.5.4. Durchlaßwiderstand

Es sind zunächst die Durchlaßspannungswerte bei -25 und -26 mA zu ermitteln und zu speichern. Die Auswertung erfolgt nach der Formel:

$$\begin{split} R_{X/Y} &= \frac{U_{X/Y} \left(-26 \text{ mA}\right) - U_{X/Y} \left(-25 \text{ mA}\right)}{1 \text{ mA}} \text{ bzw.} \\ R_{Y/X} &= \frac{U_{Y/X} \left(-26 \text{ mA}\right) - U_{Y/X} \left(-25 \text{ mA}\right)}{1 \text{ mA}} \end{split}$$

4.5.5. Durchlaßwiderstandsdifferenz

$$\Delta R_S$$
 bzw. $\Delta R'_S = \frac{U'_O - U_O}{50 \cdot 1 \text{ mA}}$

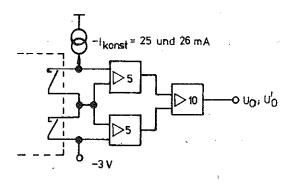


Bild 5

5. TRANSPORT UND LAGERUNG

nach TGL 24951

6. INFORMATIONSMATERIAL

Im Informationsblatt des Herstellers ist anzugeben:

- Typische Werte alle Haupt- und Nebenkenngrößen Eingangsströme der Logik (\vec{I}_{ZT} , I_{IM} , I_{BR}) Substratstromaufnahme
- Abhängigkeiten (bei 25 und 70°C) Durchlaßspannung

$$U_{a1/a2} = f(I_{a2})$$

$$U_{b1/b2} = f(I_{b2})$$

 $U_{Ta1/a1} = f(I_{a1})$
 $U_{Tb1/b1} = f(I_{b1})$

$$U_{Tb1/b1} = f(I_{b1})$$

$$U_{Tb1/b1} = f(I_{b1})$$

 $U_{Ta2/a3} = f(I_{a3})$ $U_{Tb2/b3} = f(I_{b3})$ Substratstromaufnahme $-I_{CC5} = f(I_{a,b})$ Sperrwiderstand $R_{off} = f(U_{X,Y})$

Hinweise

Im vorliegenden Standard ist auf folgende Standards Bezug ge-

TGL 9206/01; TGL 24951; TGL 26713; TGL 31487/07; TGL 32377/02; TGL 200-0053/04; TGL 200-0057/04