VERMEESSUNG UND MODELIERUNG DYNAMISCHER
EIGENSCHAFTEN INTEGRIERTER CMOS-GATTER

Dr. Ing. Gerd K. Heinz
ZKI der AdW, Abt. TS
Rudower Chaussee 5
Berlin (DDR), 1199

(A. Sept. 1989)

Im Vortrag werden einige grundlegende theoretische Beziehungen vorgestellt, die einen Ansatzpunkt geben können, perspektivisch die Vorzüge der dynamischen Logiksimulation (kurze Rechenzeit) mit denen der Netzwerksimulation (hohe Genauigkeit der Rechnung) zu kombinieren. Aufbauend darauf werden praktische Untersuchungsergebnisse vorgestellt. Die vorgestellten Untersuchungen entstanden in den Jahren 1984...86. Sie sind dem interessierten Leser in der bislang einzigen Veröffentlichung /1/ zugänglich.

1. Digitale Flanken

Um digitale Flanken unter Berücksichtigung endlicher Flankendauer zu berechnen, ist es erforderlich, Bezugspotentiale zu definieren. Dies gelingt, wenn eine digitale Flanke mathematisch als Taylorreihe entwickelt wird. Unter Annahme von auf Signalhub normierten Spannungen \(u = U/U_{\text{hub}} \) seien zwei Flanken \(u_1(t) \) und \(u_2(t) \) betrachtet.

\[
\begin{align*}
 u_1(t) &= u_1(t_1) + \frac{u_1'(t_1)}{1!} (t-t_1) + \frac{u_1''(t_1)}{2!} (t-t_1)^2 \ldots \quad (1) \\
 u_2(t) &= u_2(t_2) + \frac{u_2'(t_2)}{1!} (t-t_2) + \frac{u_2''(t_2)}{2!} (t-t_2)^2 \ldots \quad (2)
\end{align*}
\]

Abb. 1 Approximation digitaler Flanken als Tripel \((u_0(t_0), t_0, f_0)\)

Für im folgenden benützte Ausdrücke werden in Analogie zu /1/ folgende Begriffe und Abkürzungen eingeführt:

...
Bezugspotential \(u_1, u_2 \) allg.: \(u_0 = U(t_0)/U_{hub} \) [1] (3)
Bezugszeit \(t_1, t_2 \) allg.: \(t_0 \) [s] (4)
Verzögerungszeit \(\gamma = t_2 - t_1 \) [s] (5)
Potentialversatz \(\mu = u_2(t_2) - u_1(t_1) \) [1] (6)
Flankensteilheit \(f = u_0'(t_0) = dU(t_0)/(dt \cdot U_{hub}) \) [Hz] (7)
Flankendauer \(T = 1/f \) [s] (8)
Flankenverhältnis \(v = f_2 / f_1 \) [1] (9)
Bezugsstrom \(I_0 = I(t_0) \) [A] (10)
Bezugskapazität \(C_0 = C(t_0) \) [F] (11)
Bezugsladung \(Q_0 = Q(t_0) = I_0 \cdot T = U_{hub} \cdot C_0 \) [As] (12)

Wird als Bezugspotential einer Flanke \(u_0(t_0) \) verändert, gilt als Grenzwert
\[\lim_{t \to t_0} \frac{u(t) - u(t_0)}{t - t_0} = u_0'(t_0) = f. \] (13)

Fuer die Verzögerungszeit \(\gamma \) bei Bezugspotentialwechsel um \(\mu \) innerhalb eines elektrischen Schaltungsknotens gilt bei der Flankensteilheit \(f \) in der Nahe des Bezugspotentials \(u_0 \) folglich
\[\gamma = \mu / f = \mu / T. \] (14)

Die Ausdrücke \(I_0, C_0 \) und \(Q_0 \) sind ebenfalls auf den Bezugspunkt \((u_0, t_0) \) bezogene Grössen.

2. Verzögerungsvektoren

Verzögerungszeit \(\gamma \) sowie Potentialversatz \(\mu \) zwischen zwei Flanken sind untrennbar verknüpft. Die Verknüpfung wird als Verzögerungsvektor \(\bar{\gamma} \) eingeführt, wobei \(\bar{\gamma} \) und \(\bar{u} \) die Einheitsvektoren von Zeit- und Spannungsachse darstellen.
\[\bar{\gamma} = \gamma \bar{t} + \mu \bar{u}. \] (15)

Verzögerungsvektoren sind vektoriell addierbar, subtrahierbar etc. In Anbetracht og. Grenzwertbetrachtung existieren Verzögerungsvektoren sowohl über elektrischen Zweigen (Gattern), als auch in elektrischen Knoten, sofern ein Knoten mehrere, voneinander verschiedene Bezugspotentiale trägt. Demnach sind Graphen eines zB. Logikplans und eines Verzögerungsschemas ia. nicht isomorph!

3. Bezugspotential

Eine statische Transferkennlinie \(U_{dq} = f(U_{di}) \) eines Gatters zeigt, dass es notig ist, jedem Gatteranschluss i ein unabhaengiges Bezugspotential \(U_{o di} \) zuzuordnen. Um das quasistatische Verhalten eines Gatters vernessen zu koehnen, ist es erforderlich, als Bezugspunkte Punkte \((U_{oa}, U_{oel}) \) des statischen
Transferkennlinienfeldes für $I_a = 0$ zu wählen.

Abb. 2
Statisches Transferkennlinienfeld eines NOR3- Gatters.

Jedem Gatteranschluss muss wenigstens ein Bezugspotential zuordbar sein. So kann der Anschluss (a) in Abb. 2 für beliebig anders gewählte U_{oa} bis zu drei Bezugspotentiale besitzen, je nachdem, welcher Eingang die Ausgangsflanke initiiert.

4. Rechenregeln

Für Netzwerke aus Verzögerungselementen gelten einige Besonderheiten.

Knoten:

$$i \rightarrow j \hspace{1cm} (u_i(t_i), t_i, f_i) = (u_j(t_j), t_j, f_j) \hspace{1cm} (16)$$

$$d = 0 \hspace{1cm} (17)$$

$$v = f_j/f_i = 1 \hspace{1cm} (18)$$

Zweig:
Die Bezugspotentialverschiebung μ des Zweiges ergibt sich aus der Differenz der Bezugspotentiale u_i, u_j der Zweiganschlüsse. Die Verzögerungszeit τ ergibt sich aus der Differenz der Bezugszeiten t_i, t_j. Ein- und ausgangsseitige Flankenverhältnisse f_i, f_j sind in der voneinander. Das Flankenverhältnis v ergibt sich aus dem Quotienten der Flankenverhältnisse f_j, f_i beider Anschlüsse.

$$\mu = u_j - u_i \hspace{1cm} (19)$$

$$\tau = t_j - t_i \hspace{1cm} (20)$$

$$v = f_j/f_i \hspace{1cm} (21)$$
Masche:
In Umlaufrichtung der Masche ist die (vektorielle) Summe der Verzweigerungsglektoren d der durchlaufenen Zweige Null. Das Produkt aller Flankenverhältnisse v des geschlossenen Maschenumlaufs ist Eins.

\[d = \sum_{i=1}^{n} d_i = 0 \] \hspace{1cm} (22)

\[v = \prod_{i=1}^{n} v_i = 1 \] \hspace{1cm} (23)

Sonderfall Bezugsstäbenliebler:
(Anisomorphie zwischen elektrischem- und Verzweigerungsschema)
Eine elektrische Verbindung (Knoten), die ein- und ausgangszeit verschiedene Bezugsstapelimina besitzt, ist als (potentialschreibender) Zweig in ein Verzweigerungsschema zu transformieren. Die durch Potentialschiebung um μ verursachte Verzweigerungszeit γ ergibt sich, kleine γ vorausgesetzt, aus dem Quotienten von Bezugsstapelimanschiebung μ und Flankenverhältnis f. Das Flankenverhältnis v ist Eins.

\[\gamma = \mu / f \] \hspace{1cm} (24)

5. Vermessung realer CMOS- Gatter

In /1/ wurde gezeigt, dass eine aus zwei Sinusteilen, die im Bezugs punkt (u_0, t_0) zusammenstossen, zusammengesetzte Flanke hinreichend die von realen Gatterketten bekannten, vielfältigsten Flankenformen approximiert. Mit einer Prozedur EDGE (siehe /1/ Anlage 3), die aus einem Tripel (u_0, t_0, f_0) einen sinusformigen Spannungsverlauf fuer die Netzwerksimulation generiert, wurden in /1/ reale Gatter im Gesamttrans von sinnvollen Eingangsflankensteilheiten und Lastkapazitaetem simuliert (Abb.3). Lastkapazitaeten C_0 sind auf die eigene Gateoxiddkapazitaet C_{ox} des Gatters als Lastfaktor $m = C_0 / C_{ox}$ normiert.

Es zeigt sich, dass die Kennlinien fuer unterschiedliche Lastfaktoren qualitativ Aehnlichkeit besitzen. Sie scheinen entlang der Diagonalen $\gamma |f_\sigma| = 1$ bzw. $f_\alpha / f_\sigma = -1$ verschoben zu sein. Mit den Normierungen der Eingangsflankensteilheit f_σ auf die Ausgangsflankensteilheit f_σ der Sprungerantwort; der Ausgangsflankensteilheit f_α auf die Eingangsflankensteilheit f_σ sowie der Verzweigerungszeit γ auf die der Quasistatik γ_0 zeigt Abb.4, dass selbst bei stark unsymmetrischen Gattern (NAND6) nur geringe Unterschiede in der so normierten Darstellung zwischen wenig ($m = 0$) und stark belasteten Gatter ($m = 1000$) auftreten. Differenzen liegen in der unterschiedlich starken Wirkung von Gate- Drain- Millerkapazitaeten begruendet (siehe dazu /1/).

Soll die Dynamik eines komplexen Gatters protokolliert werden, sind Protokolle fuer alle eine Ausgangsaenderung inizierenden Eingaenge anzulegen.
Typische Veränderungen dynamischer Kennlinien unter variierender Betriebsspannung sind in /1/ zu finden.

6. Dynamische Eckkenngrössen

Ausgehend von einem statischen Kennlinienfeld eines Gattereingangs gelingt es, dynamische Eckkenngrössen eines digitalen Gatters herzuleiten, siehe Abb.5.

\(r_0 \) kennzeichnet den differentiellen Innenwiderstand im Bezugspunkt \((U_{DG}, U_{DC}) \); \(v_0 \) die differentielle, statische Spannungsverstärkung im Bezugspunkt; \(g_x \) sowie \(U_{gx} \) (x: Flankenrichtungsindex) kennzeichnen Grosssignalparameter für die Bestimmung der Sprungantwort des Gatters.

Abb. 3 Dynamisches Transferkennlinienfeld eines CSGT2- Inverters.
Quelle: /1/; HL- Flanke, \(U_0 = 2,500 \text{ V} \), \(U_{hub} = 5 \text{ V} \).
Für eine quasistatische Arbeitsweise ($f_e \to 0$) gilt nach /1/:

$$f_0 = v_0 \cdot f_e$$

$$\gamma_Q = r_0 \cdot C_0$$

(26)

(27)

Für die Sprungantwort ($f_e \to \infty$) gilt nach /1/:

$$f_{0x} = -\frac{1}{U_{\text{hub}} C_0}$$

$$\gamma_{Sx} = \frac{U_{Sx} C_0}{-1} + \gamma_m$$

(28)

(29)

γ_m bezeichnet einen Miller-Verzögerungsanteil.

Abb. 4 Normiertes, dynamisches Transferkennlinienfeld eines C5672- NAND-Gattereingangs /1/. $U_0 = 2,341$ V, $U_{\text{hub}} = 5$ V.
Zwischen der Verzögerungszeit der Quasistatik τ_q und der der Sprungantwort τ_{sX} besteht beim einstufigen Gatter ein festes Verhältnis.

\[
\frac{\tau_q}{\tau_{sX}} \approx \frac{r_0 \cdot l_{sX}}{l_{u_{sX}}}
\] (30)

Wird formal ein Quotient aus den Flankensteilheiten von Quasistatik (G) und Transitfall (T) für den Eingang (e) und für den Ausgang (a) gebildet, so kann mit den Nebenbedingungen für den Transitfall $f_{aT} = f_{eT} = -1$ und für die Quasistatik Glg.(26)

\[
\frac{v_a}{v_e} = f_{aT} / f_{aQ} , \quad \frac{v_e}{v_e} = f_{eT} / f_{eQ}
\] (31)

\[I_{S+} = I_{a\left(U_L, U_{oa}\right)} \quad I_{S-} = I_{a\left(U_H, U_{oa}\right)}
\]

\[
v_o = \frac{dU}{dU_e}, \quad r_o = \frac{dU}{dI_a}, \quad q_o = \frac{dI_a}{dU_e} = \frac{v_o}{r_o}
\]

![Diagram](image)

Abb.5 Statisches Kennlinienfeld eines NOR3- Gattereingangs /1/.

Eine überraschend einfache Beziehung für die Länge der Übergangsbereiche gefunden werden. Die (logarithmischen) Längen v_a von den Übergangsbereiche zwischen Quasistatik und beginnender Sprungantwort (Transitfall) sind über die differentielle, statische Spannungsverstärkung des Gatters v_0 verknüpft (v_0 ist negativ!)

\[v_e + v_0 \cdot v_a = 0 \] (32)

Literatur: