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Abstract 

Observing time domain properties (delays, excitement locations, time functions at 
locations, velocities) we find general communication principles of nerve networks. We 
will call the abstraction ‘Wave Interference Network’ (IN).  

Signals on wires of IN have distributed, inherent delays. In absence of central clocks, all 
signals appear distributed. Every shift of information is binding to delays. The term 
‘interference’ means a universal superimposition or interaction of mostly non-periodic, 
spiking and delayed time functions. In contrast to artificial neural nets (ANN), IN mirror 
the resulting maps in the same way as nerve nets do (somatotopy). 

Analyzing the spherical flow of time functions in two or more dimensions, we find wave 
properties. IN create an abstract wave theory without materialistic background. 
Observing meeting places of waves and relating interference integrals, a special 
understanding of information theory can occur: the location of a circuit codes the 
behavior of a network. Comparing interference properties between mapping 
mechanisms, we find seeing and hearing as the same thing.  

Analyzing self-interference properties (interference of a single wave), we find movement 
and zooming of maps. Observing cross-interference conditions relating to the pulse-
pause, we find basic relations for the mapping of noises by contrast to visual mapping.   

The lecture addresses questions of a general understanding of pictures of thought 
(imagination), visual maps, sound maps or movement maps in nerve systems in the 
same way, as it addresses technical applications (acoustics, Radar, Sonar, lens systems, 
feedback controls, GPS, cellular networks, convolution codes, integral transformations or 
digital filters).  

One can guess the potential of nerve-like interference systems, remembering our whole 
signal theory consists on integral transformations (FFT, Convolution, Laplace, Hilbert, 
Wavelet  etc.) with two time-functions, while one of 40 billion pyramidal neurons of the 
human brain has on average 7400 synapses. 

Introduced as basic course lecture, the IN-approach creates a potential for education of 
students in different fields. It combines central parts of optics, neural nets, acoustics, 
filter theory, control theory, electron-physics, cellular automaton, integral transforms 
and neuroscience under the same roof of ideas. 
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Abstract – In different technical fields, relative delays of signals 

define the function. In case of Radar, Sonar, GPS, digital filter, 

optics, earthquake prediction or nerve nets they play the main 

important rule. Trying to extract the main structural 

information of all these different techniques, most of them 

become decomposed into delays (edges) and operators (nodes). 

Binding nodes additional to spherical coordinates and 

suggesting, all information needs time to bridge spaces, and 

larger delays imply larger edges, resulting delay graphs get 

spherical properties. Time- and space-functions characterize 

the flow of information in such nets. They flow wave-like, 

giving specific possibilities for a better understanding of field 

properties. Integration about combination (sum, 

multiplication, fuzzy sum) of space functions at nodes, called 

‘interference integral’, shows the relation between time-

function and image – also optical images show interference 

integral properties. We will call the abstraction ‘Interference 

Network (IN)’. Following this way, IN shows a physical 

connection between seeing and hearing, between time-function 

and image, independent of the physical substrate or delay 

space, that means acoustic, optic, ionic (nerve-like) or electric 

delaying spaces. The term ‘interference networks’ contributes 

the fact, that most of analysis in physics is done today with 

numeric discretisation.  

“Mathematics is an experimental science,  
definitions do not come first, but later on.” 

Oliver Heaviside 

I. INTRODUCTION 

Thinking about Radar for cars, per coincidence I found 

1992, that nerve nets project images like optical lens 

systems only mirroring. This was (sorry: is up to now) new 

in neuroscience, but predictable for engineers in optics, 

Sonar or Radar developments. The thumb-experiment [2] 

showed 1992 predictable wave-like nerve-properties. New 

applications were first acoustic images and films – not 

known in acoustics [16]. So what is the common knowledge 

between Radar, nerve net, and acoustics?  

General ideas for IN were born in the years 1992/1993 as 

an attempt to understand something more about nerve 

networks [3]. The term ‘Interference Networks’ appeared 

later to set some boundaries to theories of ‘Artificial Neural 

Networks (ANN)’. Find an introduction in [12]. 

Analyzing the flow of information in delaying systems, a 

common knowledge stands behind approaches using delays. 

Independent of the medium, in different fields we find 

comparable technologies for information processing: 

• Acoustic imaging:  

• Supersonic Arrays  

• A, B, M – methods  

• SONAR 

• Electric field imaging and localization: 

• Global Positioning System (GPS) 

• RADAR 

• Radio telescopie and –interferometrie: 

• Superimposition of images - VLA 

• Superimposition of time functions – SKA 

• Optical projection systems 

• Nerve nets (ionic conduction) 

• EKG, EEG 

• Artificial neural nets 

• Integrated circuits 

• Quantum mechanics 

Most of the technologies use different ‘languages’, which 

means, each direction uses own codes and abbreviations. It 

is sometimes not easy to understand details. Some of the 

common technologies in all fields are integral-

transformations, like 

• Correlation 

• Modulation  

• Convolution  

• Fourier-transformation 

• Wavelet-transformation 

If we think about common properties, it is to hope IN- 

abstraction can push the different directions, learning from 

the other. IN tries to appear as a common language, 

knowledge and simplest abstraction layer.  

Sorted by task, we find applicable fields for IN: 

• Spatial techniques 

• Optical projections 

• GPS 

• Radio telescopie 

• Radar 

• Antenna construction 

• Sonar 

• Acoustic cameras 

• Temporal tasks 

• Digital filter 

• Frequency maps 

• Nyquist plots 

• Coding tasks 

• Neural nets 

• Cell phones 
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• Digital circuits 

• State machines 

The fields use common knowledge about differential 

equations, angular frequencies, complex numbers, time 

functions, wavelengths, velocities, and delays. However, the 

specific knowledge in the fields is very different and 

complex. 

Periodic waves occupy nearly all approaches, suggesting 

waves are always periodic. For example, the wave and the 

wave function in Wikipedia [10] define periodic wave 

functions using complex numbers and angular frequencies. 

Non-periodic character of IN approach shows, this is 

definitely not true. In describe non-periodic or periodic 

waves.  

The document shows, that non-periodic ‘time-function 

waves’ exist in time domain. They have interesting 

properties, for example to understand nerve nets or to reach 

ultra-high speeds in integrated circuit design. Waves appear 

as a generalizing term including non-periodic and periodic 

case, although the paper is to focus exclusively on properties 

of non-periodic waves.  

Analyzing the probable location of a signal, IN suggest 

‘waves of information distribution’. A concept for wave 

visualization gives the chance to understand interference 

systems of any kind clearer. Integration over wave fields in 

time produces locations for valid signal conjunctions, and in 

an optical association the term ‘image’. We find a concept 

of synchronization without clocks in nerve nets.  

The lecture will be the first attempt, to start a cautious, 

formal characterization of IN. 

II. SYNCROTOPIC CAUSALITY  

Calculating Boolean functions with Karnaugh-maps, 

nobody would think about time relations. We consider, the 

signals ‘are infinitely long’. However, in real world, all 

reasons have a live time; reasons have to occur exactly in 

the right time at the right place relative to the other to 

guarantee any function or 

malfunction of anything.  

Arthur Schopenhauer 

introduced the term ‘causality’ 

[1] in a meaning of sequential 

delay chains: any cause B 

follows on a reason A, or A 

causes B.  

Figure 1.  Synchrotopy - crash 

between an airplane and a helicopter. 

Devices have to be at the same time at 

the same place to cause a crash [9]. 

Enhancing Schopenhauer’s 

definition [1], engineers use 

the term ‘causality’ for synchronous mechanisms with more 

inputs too; for example: synchronizing clock and data at a 

latch, a crash between helicopter and airplane (Fig.1) or a 

modulation between two time-functions.  

The airplane-helicopter crash shows the central idea of 

interference nets: If information has a short wavelength 

(length of the devices) a causal event (crash) is only possible 

with very precise timing. 

For correct work of causal mechanisms, delays and 

synchronization have the main impact. Correct combination 

of information needs a correct timing of all respective inputs 

relative to the other. If signals in a circuit come too early or 

too late, the circuit would not work: If I reach the station too 

late, I will miss the train. To reach the destination, we need 

synchronism between events at the same time and location: 

for example between the ‘train’ and ‘me’.  

Thinking about a precise word for causality in time and 

location it is possible to combine words with Greek 

language portions: together (syn-), time (chronos) and 

location (topos) to the new word ‘synchrotopy’. Interference 

nets describe synchrotopic circuits. This has not so much to 

do with clocks, rather we have to talk about relative flow of 

information and about relative delayed signals. 

III. DISTANCE MEASURES 

Every physical signal or information needs time to bridge 

spaces. Every physical time function appears delayed at a 

destination, which has a different location. As longer is the 

distance, as longer is the partial signal delay. The 

interference net (IN) approach has only on rule: Propagation 

of signals with zero delays between any distances in space is 

not allowed. Every distance and the corresponding delay 

produces an delay between two nodes of the IN. 

To analyze time-functions in one or more space 

dimensions, we calculate the geometrical shift of the time-

function by delay for each pixel (voxel) in space.  

Different applications have different measures for 

distance r and delay τ , combined over velocity v: 

a) Nerve nets show inhomogeneous delay structure 

relating to the thickness and length of the wires (axons or 

dendrites). Modeling the fine-structure needs detailed delay 

graphs for each connection, consisting of processing nodes 

and delaying edges. On larger scales, Euclidian space seems 

to be applicable. 

b) Large, digital, integrated circuits (IC) have a 

orthogonal wiring in x- and y-direction, sometimes called 

Manhattan-style [13]. Distance r between any two points in 

orthogonal connected space is for the most integrated 

circuits the sum of absolute values in x- and y-direction, see 

for example [4] ‘Bild 2c’, 
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c) Radar, GPS, Sonar, optics or acoustic applications 

often address a linear, Euclidian distance measure. The 

delay τ for each voxel in  space or pixel on area can be 

computed dependent of distance r in the well known form 
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In binary-clocked, routing networks, also the Hamming-

distance can play a rule for distance measures, [13]. 

IV. UNIT SYSTEM 

Because of the physical background, the use of physical 

time-functions is necessary, that means systems between 

distance, velocity, time or frequency and delay. It is 

supposed and further not noted, that each task starts with 

initial scaling of time-functions to a physical system of 

units. Application of matrix and vector notations is only 

used at any second level of information processing. We 

prefer one-dimensional time-functions as vectors (matrices 

of format (1, n) or (n,1)) with unique time scale, which 

means, with identical sampling rates. 

V. WAVE MEASURES 

Any duration of validity of a signal in relation to the net 

geometry or size has higher importance, as higher are the 

data rates related to transmission velocity. Thinking about 

very high data rates on large networks, any synchronisation 

becomes more and more difficult. Suggesting a delaying 

space, the system size, velocity, and maximum data rate 

correspond, using the term ‘wave-length’, known from 

electronics.  

The geometrical wave distance Λ for a signal data rate f 

with velocity v corresponding to duration Τ  is 

(3) Λ = vΤ = v/f 

The interval of signal presence – the geometrical wave 

length - is the length λ of a wave, relating to velocity v and 

interval τ of signal validity 

(4) λ = vτ  

Examples: 

Connecting some ATM-signals running with f = 155 

Mbit/s on wires with velocity 1/v = 10 ns/m on coax 

cable, the possible interval of signal validity is of interest. 

For a 1:1 signal/pause ratio we get λ = v/2f = 30 cm. 

Inspecting nerve dendrites with v = 3 m/s and a pulse 

width of 0.1 ms generates geometrical pulse length λ = vτ 

= 3 m/s
 .
 0.1 ms = 0.3 mm. 

VI. TIME- FUNCTION AND SPACE-FUNCTION 

Using the term ‘time-function’, we talk in interference 

nets about two very different thinks: about time-functions or 

about space functions. Using for example a term f(vt-r), we 

have the possibility, to run r or vt as parameter on the 

horizontal axis.  

Independent of the space measure norm, we prefer 

functions that move in space with constant velocity v. Any 

time-function can have an initial delay (pre- or post-delay) 

of T, which means, it can come into a field pre- or post-

delayed dependent of the signs. In detail, we get for 3-

dimensional spaces following forms. 

a) Time-function visualization: Distance r is a constant,  

f(t,r) = f(t), running parameter is t. The interest concerns on 

a time-function at a location or node. We get oscillographic 

functions dependent of parameter t (time for horizontal axis 

of plots) for a single location (xo,yo,zo). 
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Figure 2.  One-dimensional location functions, see the Scilab-source in 

homepage [4], image ‘Bild 1’. Two parameters, vt and x, create four 

schemes A…D. Cases A and B show waves with tail at the end, C and D 

shows waves with tail in front.  

b) Space-function visualization: time t is constant,  

f(t,r) = f(r), running parameter is r. The interest is to follow 

the flow of information thru a network. We prefer 



subsequent images (movies) dependent of location 

parameters (x,y,z) or distance measures r, where the time  

parameter vti runs with the image number i.  

(6)  ),,,,(),,( 0vTvtzyxfzyxf i= . 

In the first case, f  has time measure, in the second case, f  

has geometric measure. Index zero concerns a fixed value; 

without any index, the running parameter is concerned. 

VII. DISCRETIZATION BETWEEN TIME AND SPACE  

Inspecting a time-function flowing over a certain location 

(xo,yo,zo) in space, the measure between steps vt (geometric 

measure) is different to the grid of the space. For accurate 

calculation it is possible to use interpolation functions 

(splines) between incoming time-function values to ensure 

proper discretisation. Without interpolation, wave field 

images can get edges in colour mappings.  

In signal processing it is common use, to define 

operations on discrete time-series. Because of the grid 

differences in space and time, for interference networks it is 

of high importance, to work with classical time function 

properties and with physical measures. 

VIII. VISUALIZATION OF SIGNAL PROPAGATION 

In one-dimensional case it is common, to plot subsequent 

space-functions, each with the next time shift vt, compare 

with [4], Scilab-source behind movie ‘Bild 1’. To generate a 

‘still’ movie as figure, it is also common, to draw images 

with parametric values vt, in a style comparable to Fig.2. 

Visualization in higher dimensional space with some 

more waves needs a different approach. It appeared to be the 

best practice, to add all waves in a field for each location 

separately (net node, pixel, voxel). The sum changes the 

colour value relative with the value, Fig.3, a…c. Examples 

with Scilab- source code behind movies or images can be 

found again on the web, see [4]. Visualization of waves at 

time point t and at location (x,y,z) is  
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where j is the time-function number index, wj is the 

incoming time function, vj is the velocity of the time 

function and rj is the distance to the source point of the 

wave j, see Fig.3, a…c. f(x,y,z) is the resulting time function 

to plot at point (x,y,z). 

For any network- operation at any node – that can be 

again a sum, a product, a difference, a quotient, a fuzzy sum 

or something else between incoming time-functions, we 

construct by analogy a term for the operation Ψ of the 

node. Again m is the number of time functions (channels). 

The resulting function g at node (x,y,z) becomes  
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For operations, products or sums have high importance.  

Fig. 3d) shows for example behind waves (a…c) the 

result of a product-Ψ-operation, a product between three 

waves exactly at the time point, the three waves (range 

between 0 and 1) meet. Before and after meeting of waves, 

the product field is zero. Only at the time point, and at the 

location, the waves meet, the product is different from zero. 

However, how is it possible to conserve this short moment 

into an image?  

 

Figure 3.  a) to c): Space-function waves in two dimensions with Euclidian 

distance, d) corresponding. Ψ-operation as multiplicative interference 

integral.  

IX. INTERFERENCE INTEGRALS 

Nerve neurons act like pulse generators. If any Ψ-

operation produces any value above a limit, the respective 

neuron (node) gives a short pulse.  

In technical applications, the result of a wave collision 

(‘interference’) is to conserve for satisfactory time to 

produce an ‘integral image’. A summation (integration) of 

all values at each node (different from zero) is a first 

solution. Any interference integration can in the simplest 

case be written as moving average filter over g(t) at 

location (x,y,z) 
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If time points on g(t) are infinite dense, or if we have a 

‘analytical’ time function for g(t), we define the 

interference integral Y  over g(t) as  
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Variables (x,y,z) mark the concerning node, pixel or voxel 

in space. 

Nevertheless, the way to calculate interference integration 

can be different. If we use for example as Ψ-operator a sum, 

(case of the ‘Acoustic Camera’ [5]), the operator- and wave 

fields are identical. Remembering, addition of time 

functions produces a new time function g(t), it is 

convenient, to store the resulting time function g(t) for each 

node. Reasoned by wave addition for operation in case of 

acoustic images, the space-function wave field f is identical 

to the operational wave field g of the node. Here the 

effective value shows for example the noise image Y, 
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A mouse-shift onto any pixel (node) in the resulting field 

plays the time function g(t) of the pixel (they can be 

different) [6]. This way, we can listen into the interference 

integral image to get a better understanding for noises 

behind coloured emissions.  

What we name colloquial with the term ‘image’ (optical 

lens image, acoustic image) appears in theory as 

interference integral of waves, unconcerned, if the nature of 

waves is periodic (optical case) or non-periodic (nerve nets). 

 

Figure 4.  Interference integrals (reconstruction of generator spaces): left) 

30-channel electrocorticogram (ECoG) [19]; right) 30-channel acoustic 

image of a landing turbo-prop airplane [18].  

X. TYPES OF INTERFERENCE 

If the data rate within a field carrying many signals, 

becomes too high, or if the pulse length becomes too wide, 

or if an average fire rate in a net becomes too high, the 

probability increases, that independent waves of different 

sources reach per coincidence any receiver just at the same 

time. In acoustic imaging, the behaviour is known as 

‘aliasing’, in microscopy we talk about ‘diffraction rings’.  

Central problem is the possibility, that waves of different 

origin or of different index reach at the same time the same 

location. It needs no imagination, that the signal density, the 

quotient between length of the valid signal and length of the 

whole wave has substantial importance. Usage of periodic 

signals (light, sound) produces the most problems to avoid 

aliasing or cross interferences.  

If we suppose, any time-function of a signal can be 

constructed of a sum of separate waves of identical index n, 

shifted by delays τ and T, 

(12) ∑ −−=
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(compare to [4], source code of ‘Bild 2a’), where n is the 

number of waves in the signal, T is any pre-delay and τ 

associates the distance from the source. 

We subdivide into three groups. 

(a) If waves of identical index n meet everywhere in the 

field, we call it ‘self interference’. The term 

associates properties of optical projections and 

images.  

(b) If waves of different index n – but from an identical 

source - meet, we talk about ‘auto interference’, 

associating the auto-correlation of signals. 

(c) If waves of different sources meet, we call it ‘cross-

interference’, associating the cross-correlation of 

signals or the aliasing within images. 

The division is of some importance, because any kind of 

non-periodic and some kind of periodic signal-processing is 

addressed.  

Optical images, produced by lens systems, are projections 

in self-interference. With delay-inversion and resulting  

map-inversion, the image reconstruction of acoustic cameras 

is in self-interference too. 

Auto-interference characterizes the large field of signal 

processing between frequency-filters and linear feedback 

shift registers (LFSR). LFSR symbolize the idea: One signal 

runs in a circle, and is combined with delayed parts of it.  

Last not least cross interferences play mostly the negative 

rule – cross interference is not desired in every kind of 

imaging technology. But in nerve nets, it can play the 

important rule for hearing and association. 

XI. CONVOLUTION AND INTEGRAL TRANSFORMATION 

Missing a better term, in [3] appeared the term 

interference-convolution (Interferenzfaltung). Teuvo 

Kohonen, a well-known neuro-scientist, did not agree with 

this term for calculation of wave-fields. He asked 1995 “Is 

this really a convolution?” So let us discuss the features of 

interference nets to realize known convolutions 
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The output sequence is y, input sequence is x and the 

impulse-response is h. Using a discrete, finite form, the 

Cauchy product of two sequences 
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a time-series of a ‘wave’ x is running over a barrier h, 

while an addition of all combinations for each n is 

necessary. Subdividing into a possible sequence shows 

series in form 

(15) y(n)      = x(0)h(n) + x(1)h(n-1) +…+ x(n)h(0) 
(16) y(n+1) = x(0)h(n+1)+ x(1)h(n) +…+ x(n)h(1) 
(17) y(n+2) = x(0)h(n+2)+ x(1)h(n+1)+…+ x(n)h(2) 

For each y the x-series is multiplied inverse with the h-

series. If x and h or k and n differ in size, we fill zeros. The 

realization is known as ‘finite impulse response’ (FIR) filter, 

where x is the input series, h are the coefficients and y is the 

output series.  

Reordering the set of equations by shifting each raw one 

position more to the left gives 

(18) y(n)    = x(0)h(n) + x(1)h(n-1) +…+ x(n)h(0) 
(19) y(n+1) = x(1)h(n) + x(2)h(n-1) +…+ x(n+1)h(0) 
(20) y(n+2) = x(2)h(n) +x(3)h(n-1 )+…+ x(n+2)h(0). 

We find time index movement of x and y in the same 

direction, while the ‘barrier’ coefficients h stand still. The 

direct IN-realization of convolution is a digital ‘finite 

impulse response’ (FIR) filter of infinite length.  

 

Figure 5.  Convolution  in nerve-like properties. Classical FIR (right) and 

IN drawing of FIR (left). It is not allowed, to give information infinite fast 

from one node to the other. Output y(t) uses a single node. By analogy to 

neural circuits, here the pulse-response h was drawn as weight wn  [3]. The 

IN-circuit associates a pyramidal-neuron. 

The disadvantage of classical FIR realisation for IN 

approaches is, that all y(n) need to have the same time slot, 

thus all summations have to be done within one node at a 

single location. To find an IN-realization without zero 

delays one edges the node of y has to fill a single location. 

Arrangements Fig.5 and Fig.6 do not violate the IN-rule of 

finite velocity between nodes, source [3]. 

Some words about Fig.5: While the input series run along 

the circumference, the output is central. Dependent of the 

application, any code, which meets the weights wn at the 

neuron N produces an output different to zero. The delays 

between circle and centre are equal and have only the 

influence; the output comes by that delay later. The pro of 

this IN-like realization is, that it uses no hidden delays. 

Known from design of microcontroller design, hidden 

delays include bottlenecks, if operations (addition, 

multiplication…) have to be done without enough time. 

 

Figure 6.  Second IN-realization of a convolution in nerve-like properties, 

source [3]. The delay chain appears subdivided into a series of separate 

delays. 

Fig.6, source [3], shows a second realization. The idea is 

to split the delay-series within the input into different, 

separate delays, each carrying and delaying the input-

function by a increasing delay 

(21) τ1 = τ 
(22) τ2 = τ + τ 
(23) τ3 = τ + τ + τ 

... ... ... 

(24) τn =  n τ 

The function is identical to classic convolution. The 

network in this form seems to be predestined to generate and 

detect bursts, we find everywhere in nerve system. Bursta 

seem to act like codes, which can be transferred over single 

wires without any interference projection. This seems to be 

important, if code is to send over single, long wires to the 

extremities.  

Although not proven, we find in nerve nets different 

possibilities for such arrangements. The hope is that a 

neuro-scientist anytime can verify such a circuit.  

Coming back to Kohonen’s question: “Is this really a 

convolution?” now we can answer: Yes and no. We find 

convolution cicuits, but the wave mechanism is different. 

And verification in nerve system has to be done.  

Following the way of convolution, we can construct 

interference nets for other integral transformations, 

avoiding edges with zero delays between nodes. 

XII. DELAY VECTOR, MASK 

Any spatial arrangement between nodes produces delays 

between nodes. If any node has n neighbours, a group of n 

delays τi characterize the delays at the node. Using a column 

vector T, we get 

(25) [ ]nT τττ ..., 21= . 



The mask is e central idea in different fields to 

compensate delays. In case of the Acoustic Camera [6] the 

mask is used to compensate for each pixel (2D-version) or 

voxel (3D-version) the delay to the corresponding 

microphone [6].  

Example: Point S in Fig.7 has two delays to the next 

nodes, the delay vector T of S has two elements,  

T = (SA, SA’).   

XIII. PROJECTING CIRCUITS 

The main idea of IN concerns the calculation of physical 

projections. Known from optical lens systems, physical 

projections mirror the images or maps between input and 

output.  

Parallel to the 1993 paper of Konishi [11] “Noise location 

of the barn owl”, the title page of [3] (1993 again) showed 

an IN for a nerve-like projecting circuit, Fig.7. Signal delays 

basing on finite velocities supposed, the edges have delays 

proportional to the length of edges. 

The function is as follows. Any receiving node M 

multiplies the incoming time functions. While time-

functions have a value-range between zero and one, 

excitement of M appears only, if signals come ‘synchrotop’. 

If a sender S submits a time-limited signal (pulse) with short 

wave length, the contra-lateral receiver gets the two partial 

waves, going over A respective A’, parallel at the same time. 

Thus, any information flow in this network is only possible 

between contra lateral senders and receivers.  

Figure 7.  Simplest projecting 

network, title page of [3]. The net 

mirrors a vector or map P of the 

input into a vector or map P’ at 

the output. 

Any map P projects a 

mirroring map P’ to the 

other side. Using different 

velocities, sizes and 

wavelengths, it is possible 

to study the circuit 

properties with nerve-like 

parameters, using the IN-

approach. The circuit 

gives a first idea about signal addressing in systems without 

clock.  

In abstract speaking, point M is synchrotop to point S. 

Map P is synchrotop to the mirroring map P’ in case of 

error-free projection. 

• Self-Interference Properties 

Is the sum of delays ∆ (scalar number) between 

synchrotopical points on a single path and together the time-

difference between begin and end of propagation, 

(26) ∑
=

=∆
k

i

i

1

τ  

and is j the number of all interesting paths for a self-

interference projection, the delays of all paths have to be 

equal 

(27) j∆==∆=∆=∆ ...21 .  

Using delay vectors, the well-ordered sum of delay 

vectors between synchrotopical nodes is the delay ∆ (scalar) 

(28) [ ] ∑
=

⋅=∆
q

p
p

T
1

1,...1,1 . 

The raw-vector of ones has the size of column vector T. 

This projection law is valid only for self-interference. 

Additional pre-delays change everything. 

Examples: Circuit Fig.7 dissociates in three delay vectors: 

for the transmitting field (top), the carrier field (middle) and 

the receiving field (bottom); q = 3; vector-size is two. 

Clocked latch: Without malfunction, it is possible to include 

equal delays into wires for clock and data-input. 

• Auto-Interference Properties 

A wave series of a single time-function maps onto a 

single point, if additional delay paths exist, having time-

differences corresponding to frequencies or codes. We will 

call it ‘auto-interference’ projections. Any frequency is 

detectable at a single location by a delay difference ∆ 

between adjacent nodes 

(29) 21/1 ττ −==∆ f . 

Any code is detectable using convolution circuits, see 

Fig.5. Find more in [12].  

• Cross-Interference Properties 

Cross interference appears between different channels and 

different wave indices in different forms. In acoustics, we 

talk about ‘side lobes’, in nerve system about ‘pain’ or 

‘confusion’. Find a simulation of cross-interference 

overflow dependent of average pulse-distance here [17]. 

• Reconstruction and Projection 

Using channel data, we have two possibilities: To 

reconstruct the sources of generator space (any natural data, 

Acoustic Camera, ECoG), or to project into the receiver 

space, validity examination (next). The numeric calculation 

does not generally change, but the delays have opposite 

signs. In case of computer reconstructions we use negative 

delays corresponding to f(x/v + τ).  

XIV. OVER-CONDITIONED SYSTEMS 

Using many more then two edges A, A’ for the connection 

within self-interfering fields (case of lens systems in optics) 



we get additional space conditions for the sums of distances. 

It is no longer possible to find conditioned solutions in the 

whole space. In optics, we get axial-near sharpness. For the 

case of nerve nets, we need additional inhomogeneities in 

distance measures. For example, using three channels in a 

two dimensional field, three waves produce a single 

interference location. Using four channels, we need a three 

dimensional space. Using n channels, we need a space 

dimension of n-1, to have the chance to propagate all waves 

to a single point. If the space dimension is d, and the 

channel number is n, to avoid over-conditioning in 

homogeneous space we find 

(30) d = n + 1. 

To overcome the restriction, the main idea for the 

Acoustic Camera with 32 channels in 3-dimensional space 

was 1993, to use negative delays for an exact compensation 

of all delays of the acoustic space [6] between each 

microphone and each reconstructable node (pixel/voxel).  

Is following the nerve system limited to 4 channels (3-

dimensional)? Supposing, nerve system uses sometimes 

more then four channels (three dimensions) for a self-

interference projection, for example, we think about n 

channels. How to use n-channels to make clear projections 

in 3-dimensional space? With axial-near sharpness, like 

optics? Thinkable. But nerve net has a second possibility. It 

can increase the space dimension to (d-1). This idea seems 

to be crazy for the first moment. But looking through a 

microscope, we find a network, that is filled with loops and 

meshes over and over. We find a very inhomogeneous 

micro-structure, far away from Euclidian norm.  

XV. MOVEMENT AND ZOOM 

What happens, if a pre-delay on a wave source point 

delays the incoming wave? The waves from opposite 

directions will meet at a different location, the point of 

interference will shift to the delayed source point, compare 

to animation ‘Bild 3b’, [4]. Therefore, interference integrals 

shift also to this location. We call the effect ‘Movement’, 

compare to [14]. 

In the case, we modify the field velocity, by holding all 

other conditions constant, the points of wave interference - 

the interference integral shifts as well, but in different 

manner. The interference integral image begins to zoom like 

a zoom-camera, compare to [15].  

XVI. EXAMPLE: WAVES OF SIGNAL INTEGRITY 

To make things transparent, let us analyse a race 

condition in integrated circuit design, comparable to [4], 

movie ‘Bild  2c’. The Scilab source code is behind the 

image.  

Forcing high communication rates in integrated circuit 

design, many signals have a limited duration of validity 

(validity interval). For a correct function of each signal 

conjunction (AND, OR, EXOR, SUM etc.) the signal 

duration of stable inputs has to overlap (cover) the possible 

variance of input delays.  

 

Figure 8.  Supposing finite velocities, in every physical network or circuit 

(electric, ionic, optical, acoustic, sonar) the connection scheme (left) 

produces a dependent timing- or delay- scheme (right) 

We have to deal more and more with signals that come 

too early or too late. In integrated circuit design, larger 

circuits produce more ‘timing problems’. However, the 

circuit designer receives the function (connection scheme) 

and the timing scheme in separate specifications. He has to 

achieve both specifications, unable to know exactly, how.  

To generate a rectangular space-function, we use a Scilab 

‘function definition’. Instead of Gaussian, we can also 

define a rectangular wave function removing the slashes. 

deff('y=welle(u)','if u<0 | u>3 y=0; else y=1; 

end') 

The function returns a single number, if it is called with a 

single number. To produce a wave-function, the time-

function f(t-x/v) moves in geometry-domain in the form 

g(vt-x) 

welle1 = welle(vt - sqrt((x-x1)^2 + (y-y1)^2)). 

Input is the time parameter t, multiplied with the field 

velocity v to a location parameter vt. Output is welle1. The 

function definition of welle comes into process. Inputs x1 

and y1 are the entry-points of the wave. The wave function 

runs within a three-level loop from inside to outside in x, y 

and vt. Finishing slopes x and y, a single image is finished, 

and the value counter for vt increments. 

Calculation of waves and I² uses in this example a pixel-

oriented form. Because we like to have all waves on the 

same field, we add the single parts 

f(ix,iy) = welle1 + welle2 + welle3. 

Matrix f(ix,iy) has the size of the image field. Calculation 

of the operator space uses a multiplication for every single 

pixel 

i(ix,iy) = welle1 * welle2 * welle3. 



To get the interference integral (the image), integration 

uses a summation. Initial value of matrix g is zero 

g = i + g;   h = g .* dx. 

Vector h avoids destruction of g. The program plots a 

series of wave images and as the last image the interference 

integral.  

 

Figure 9.  Orthogonal wiring of an IC produces diagonal validity waves 

a)…c). Three signals with limited validity time (bright) come into the field. 

To find a place for a correct conjunction of all three, the maximum of the 

interference integral d) shows a single location for a correct conjunction 

location, Scilab-source and wave field movie see [4]. 

XVII. SUMMARY 

A network class, consisting of operational nodes and 

delaying edges, called ‘interference networks’, shows 

‘waves of information’. Introducing space-functions in more 

then one dimension shows the possibility to analyze periodic 

and non-periodic wave fields of signals. The wave field 

calculus uses an addition of the space functions for each 

node. Parallel to the wave field the operations field (Ψ-field) 

gives the possibility to find wave collisions. Integration over 

the operations field produces the so called ‘interference 

integral’, colloquial named as ‘image’. The interference 

integral and its inverse gives the chance to construct images 

from time-functions (acoustic camera) or to produce time 

functions from images. So it predicts the unity of ‘to see’ 

and ‘to hear’ for nerve system. The work shows that 

coupling of theories of wave fields to periodic functions is 

confusing [10]. The background of interference network 

theory shows, how to deal with non-periodic waves too. 

Because it makes no difference between periodic or non-

periodic time functions, it appears as a generalization for 

many wave field approaches.  
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